Bubble, Insertion & Tree Sorts

Kuan-Yu Chen (it 5 %)

2020/11/23 @ TR-313, NTUST

Sorting

 Sorting means arranging the elements of an array so that they
are placed in some relevant order which may be either
ascending or descending

A sorting algorithm is defined as an algorithm that puts the
elements of a list in a certain order, which can be either
numerical order, lexicographical order, or any user-
defined order

— Bubble, Insertion, Selection, Tree
— Merge, Quick, Radix, Heap, Shell

Bubble Sort.

« Bubble sort is a very simple method that sorts the array
elements by repeatedly moving the largest element to the
highest index position of the array segment

— Consecutive adjacent pairs of elements in the array are
compared with each other

— If the element at the lower index is greater than the element at
the higher index, the two elements are interchanged

 This procedure of sorting is called bubble sorting because
elements “bubble” to the top of the list

Bubble Sort..

« The procedure!

P Vak V' /\L/\f\/\
2) [A3] | A4 | Aln — 4]aln — 3]Aln -~ 2}aln 1]
N AN AR A \)V\)'

RNARN AR A R AR A

[1]

=

f\

Al
\)'\)'
AR
A

The basic methodology of the working of bubble sort is given as follows:
(a) InPass 1,A[0] and A[1] are compared, then A[1] 1S compared with A[2], A[2] 1S compared with
A[3], and so on. Finally, A[N-2] 1s compared with A[N-1]. Pass | mnvolves n-1 comparisons

and places the biggest element at the highest index of the array.

(b) InPass 2, A[0] and A[1] are compared, then A[1] 1s compared with A[2], A[2] 1s compared with
A[3], and so on. Finally, A[N-37 1S compared with A[N-2]. Pass 2 mvolves n-2 comparisons
and places the second biggest element at the second highest mdex of the array.

(¢) InPass 3,A[0] and A[1] are compared, then A[1] 1s compared with A[2], A[2] 1s compared with
A[3], and so on. Finally, A[N-4] 1s compared with A[N-3]. Pass 3 imnvolves n-3 comparisons
and places the third biggest element at the third highest index of the array. -

(d) InPass n-1,AT07 and A[1] are compared so that A[o]<A[1]. After this step, all the elements of
the array are arranged 1 ascending order.

Example.

 Please sort a given data array by using bubble sort

(a)
(b)

(c)
(d)

(e)
(f)
(g)

A[] = {30, 52, 29, 87, 63, 27, 19, 54}

— Pass 1:

Compare
Compare
30, 29,
Compare
Compare
30, 29,
Compare
30, 29,
Compare
30, 29,
Compare
30, 29,

30 and 52. Since 30 < 52,
52 and 29. Since 52 > 29,
52, 87, 63, 27, 19, 54
52 and 87. Since 52 < 87,
87 and 63. Since 87 > 63,
52, 63, 87, 27, 19, 54
87 and 27. Since 87 > 27,
52, 63, 27, 87, 19, 54
87 and 19. Since 87 > 19,
52, 63, 27, 19, 87, 54
87 and 54. Since 87 > 54,
52, 63, 27, 19, 54, 87

no swapping
swapping 1is

no swapping
swapping 1is

swapping 1is
swapping 1is

swapping 1is

is done.
done.

is done.
done.

done.

done.

done.

Example..

 Please sort a given data array by using bubble sort

(a)
(b)
(c)
(d)
(e)

(f)

A[] = {30, 52, 29, 87, 63, 27, 19, 54}

— Pass 1:

— Pass 2:

Compare
29, 30,
Compare
Compare
Compare
29, 30,
Compare
29, 30,
Compare
29, 30,

30, 29, 52, 63, 27, 19,

30 and 29. Since 30 > 29,
52, 63, 27, 19, 54, 87
30 and 52. Since 30 < 52,
52 and 63. Since 52 < 63,
63 and 27. Since 63 > 27,
52, 27, 63, 19, 54, 87
63 and 19. Since 63 > 19,
52, 27, 19, 63, 54, 87
63 and 54. Since 63 > 54,
52, 27, 19, 54, 63, 87

54, 87

swapping 1is
no swapping
no swapping
swapping 1is

swapping 1is

swapping 1is

done.

is done.
is done.
done.

done.
F

done.

Example...

 Please sort a given data array by using bubble sort

(a)
(b)
(c)

(d)

A[] = {30, 52, 29, 87, 63, 27, 19, 54}

— Pass 2:

— Pass 3:

Compare
Compare
Compare
29, 30,
Compare
29, 30,
Compare

29, 30, 52, 27, 19, 54,

29 and 30. Since 29 < 30,
30 and 52. Since 30 < 52,
52 and 27. Since 52 > 27,
27, 52, 19, 54, 63, 87

52 and 19. Since 52 > 19,
27, 19, 52, 54, 63, 87

52 and 54. Since 52 < 54,

63, 87

no swapping
no swapping
swapping 1is
swapping 1s

no swapping

is done.
is done.
done.

done.

is done.

7

Example....

 Please sort a given data array by using bubble sort

(a)
(b)

(d)

A[] = {30, 52, 29, 87, 63, 27, 19, 54}

— Pass 3:

— Pass 4:

Compare
Compare
29, 27,
Compare
29, 27,
Compare

29, 30, 27, 19, 52, 54,

29 and 30. Since 29 < 30,
30 and 27. Since 30 > 27,
30, 19, 52, 54, 63, 87
30 and 19. Since 30 > 19,
19, 30, 52, 54, 63, 87
30 and 52. Since 30 < 52,

63, 87

no swapping is done.
swapping is done.

swapping is done.

no swapping is done.

Example.....

 Please sort a given data array by using bubble sort

A[] = {30, 52, 29, 87, 63, 27, 19, 54}

— Pass 4:

29, 27, 19, 30, 52, 54, 63, 87

— Pass 5:

(a) Compare 29 and 27. Since 29 > 27, swapping is done.
27, 29, 19, 30, 52, 54, 63, 87

(b) Compare 29 and 19. Since 29 > 19, swapping is done.
27, 19, 29, 30, 52, 54, 63, 87

(c) Compare 29 and 30. Since 29 < 30, no swapping is done.

Example......

 Please sort a given data array by using bubble sort

A[] = {30, 52, 29, 87, 63, 27, 19, 54}

— Pass 5:

27, 19, 29, 30, 52, 54, 63, 87

— Pass 6:

(a) Compare 27 and 19. Since 27 > 19, swapping is done.
19, 27, 29, 30, 52, 54, 63, 87
(b) Compare 27 and 29. Since 27 < 29, no swapping is done.

10

Example.......

 Please sort a given data array by using bubble sort

A[] = {30, 52, 29, 87, 63, 27, 19, 54}

— Pass 6:
19, 27, 29, 30, 52, 54, 63, 87

— Pass 7:

(a) Compare 19 and 27. Since 19 < 27, no swapping is done.

11

Bubble Sort...

BUBBLE_SORT(A, N)

Step 1: Repeat Step 2 For I = 0 to N
Step 2: Repeat For J =0 to N - IT-1
Step 3: IF A[J] > A[J + 1]
SWAP A[J] and A[J+1]
[END OF INNER LOOP]
[END OF OUTER LOOP]
Step 4: EXIT

12

Insertion Sort.

o Insertion sort is a very simple sorting algorithm in which the
sorted array (or list) is built one element at a time

« The procedure of the insertion sort

— The array of values to be sorted is divided into two sets
« One stores sorted values

« Another contains unsorted values

— The sorting algorithm will proceed until there are no elements
in the unsorted set

13

Example

 Please sort a given data array by using insertion sort

391 9 145|163 | 18| 811108 54 | 72 | 36

39| 9 |45 63| 18| 811108 54 | 72 | 36 39| 9 145163 |18 | 81|108| 54| 72| 36

A[0] is the only element in sorted list (Pass 1)

9 [39|45 | 63| 18| 81 |108| 54| 72 | 36 9 39 |45 | 63 | 18| 81 |108| 54 | 72 | 36
(Pass 2) (Pass 3)

9 |39 |45 | 63 | 18 | 81 |108| 54| 72 | 36 S 18 | 39 | 45 | 63 | 81 |108| 54 | 72 | 36
(Pass 4) (Pass 5)

9 [18 |1 39145 | 63| 81 |108| 54| 72 | 36 9 18| 39|45 |63 | 81|108)| 54| 72| 36
(Pass 6) (Pass 7)

9 [18 139|145 (54| 63| 81|108| 72| 36 9 |18 139|145 |54 | 63| 72| 81(108]| 36
(Pass 8) (Pass 9)

14

Insertion Sort..

INSERTION-SORT (ARR, N)

Step
Step

Step

Step 5:

Step 6:

index

1
2:
Step 3:
4

Repeat Steps 2 to 5 for K
SET TEMP = ARR[K]
K - 1
Repeat while TEMP <= ARR[J]
SET ARR[J + 1] = ARR[J]

SET J

SET J

J -

1

[END OF INNER LOOP]

SET ARR[J + 1]

[END OF LOOP]

EXIT

TEMP

1toN-1

45

63

18

81

108

54

72

36

15

Tree Sort

A tree sort is a sorting algorithm that sorts numbers by
making use of the properties of binary search tree

— Build a binary search tree

— Do an in-order traversal

16

Questions?

kychen@mail.ntust.edu.tw

17

